rsf2csf#
- scipy.linalg.rsf2csf(T, Z, check_finite=True)[Quelle]#
Reale Schur-Form in komplexe Schur-Form konvertieren.
Konvertiert eine quasi-diagonale reellwertige Schur-Form in die obere-dreieckige komplexwertige Schur-Form.
Die Dokumentation wurde unter der Annahme verfasst, dass die Array-Argumente bestimmte „Kern“-Formen haben. Array-Argumente dieser Funktion können jedoch zusätzliche „Batch“-Dimensionen vorangestellt haben. In diesem Fall wird das Array als Stapel von niedrigdimensionalen Schnitten behandelt; siehe Gestapelte lineare Operationen für Details.
- Parameter:
- T(M, M) array_like
Reale Schur-Form des ursprünglichen Arrays
- Z(M, M) array_like
Schur-Transformationsmatrix
- check_finitebool, optional
Ob geprüft werden soll, ob die Eingabearrays nur endliche Zahlen enthalten. Deaktivieren kann die Leistung verbessern, kann aber zu Problemen (Abstürze, Nicht-Terminierung) führen, wenn die Eingaben Unendlichkeitswerte oder NaNs enthalten.
- Rückgabe:
- T(M, M) ndarray
Komplexe Schur-Form des ursprünglichen Arrays
- Z(M, M) ndarray
Schur-Transformationsmatrix, die der komplexen Form entspricht
Siehe auch
schurSchur-Zerlegung eines Arrays
Beispiele
>>> import numpy as np >>> from scipy.linalg import schur, rsf2csf >>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]]) >>> T, Z = schur(A) >>> T array([[ 2.65896708, 1.42440458, -1.92933439], [ 0. , -0.32948354, -0.49063704], [ 0. , 1.31178921, -0.32948354]]) >>> Z array([[0.72711591, -0.60156188, 0.33079564], [0.52839428, 0.79801892, 0.28976765], [0.43829436, 0.03590414, -0.89811411]]) >>> T2 , Z2 = rsf2csf(T, Z) >>> T2 array([[2.65896708+0.j, -1.64592781+0.743164187j, -1.21516887+1.00660462j], [0.+0.j , -0.32948354+8.02254558e-01j, -0.82115218-2.77555756e-17j], [0.+0.j , 0.+0.j, -0.32948354-0.802254558j]]) >>> Z2 array([[0.72711591+0.j, 0.28220393-0.31385693j, 0.51319638-0.17258824j], [0.52839428+0.j, 0.24720268+0.41635578j, -0.68079517-0.15118243j], [0.43829436+0.j, -0.76618703+0.01873251j, -0.03063006+0.46857912j]])