Verallgemeinerung der Chi-Verteilung. Der Formparameter ist \(\nu>0.\) Die Träger ist \(x\geq0.\)
\begin{eqnarray*} f\left(x;\nu\right) & = & \frac{2\nu^{\nu}}{\Gamma\left(\nu\right)}x^{2\nu-1}\exp\left(-\nu x^{2}\right)\\ F\left(x;\nu\right) & = & \frac{\gamma\left(\nu,\nu x^{2}\right)}{\Gamma\left(\nu\right)}\\ G\left(q;\nu\right) & = & \sqrt{\frac{1}{\nu}\gamma^{-1}\left(\nu,q{\Gamma\left(\nu\right)}\right)} \end{eqnarray*}
\begin{eqnarray*} \mu & = & \frac{\Gamma\left(\nu+\frac{1}{2}\right)}{\sqrt{\nu}\Gamma\left(\nu\right)}\\ \mu_{2} & = & \left[1-\mu^{2}\right]\\ \gamma_{1} & = & \frac{\mu\left(1-4v\mu_{2}\right)}{2\nu\mu_{2}^{3/2}}\\ \gamma_{2} & = & \frac{-6\mu^{4}\nu+\left(8\nu-2\right)\mu^{2}-2\nu+1}{\nu\mu_{2}^{2}} \end{eqnarray*}
MLE der Nakagami-Verteilung in SciPy (nakagami.fit)
Die Wahrscheinlichkeitsdichtefunktion der nakagami-Verteilung in SciPy ist
\begin{equation} f(x; \nu, \mu, \sigma) = 2 \frac{\nu^\nu}{ \sigma \Gamma(\nu)}\left(\frac{x-\mu}{\sigma}\right)^{2\nu - 1} \exp\left(-\nu \left(\frac{x-\mu}{\sigma}\right)^2 \right),\tag{1} \end{equation}
für \(x\), so dass \(\frac{x-\mu}{\sigma} \geq 0\), wobei \(\nu \geq \frac{1}{2}\) der Formparameter, \(\mu\) der Ort und \(\sigma\) die Skala ist.
Die Log-Likelihood-Funktion ist daher
\begin{equation} l(\nu, \mu, \sigma) = \sum_{i = 1}^{N} \log \left( 2 \frac{\nu^\nu}{ \sigma\Gamma(\nu)}\left(\frac{x_i-\mu}{\sigma}\right)^{2\nu - 1} \exp\left(-\nu \left(\frac{x_i-\mu}{\sigma}\right)^2 \right) \right),\tag{2} \end{equation}
die erweitert werden kann zu
\begin{equation} l(\nu, \mu, \sigma) = N \log(2) + N\nu \log(\nu) - N\log\left(\Gamma(\nu)\right) - 2N \nu \log(\sigma) + \left(2 \nu - 1 \right) \sum_{i=1}^N \log(x_i - \mu) - \nu \sigma^{-2} \sum_{i=1}^N \left(x_i-\mu\right)^2, \tag{3} \end{equation}
Wenn die Trägerbeschränkungen weggelassen werden, ergeben die Ableitungsbedingungen erster Ordnung für die Optimalität der Likelihood-Ableitungen Schätzungen der Parameter
\begin{align} \frac{\partial l}{\partial \nu}(\nu, \mu, \sigma) &= N\left(1 + \log(\nu) - \psi^{(0)}(\nu)\right) + 2 \sum_{i=1}^N \log \left( \frac{x_i - \mu}{\sigma} \right) - \sum_{i=1}^N \left( \frac{x_i - \mu}{\sigma} \right)^2 = 0 \text{,} \tag{4}\\ \frac{\partial l}{\partial \mu}(\nu, \mu, \sigma) &= (1 - 2 \nu) \sum_{i=1}^N \frac{1}{x_i-\mu} + \frac{2\nu}{\sigma^2} \sum_{i=1}^N x_i-\mu = 0 \text{, und} \tag{5}\\ \frac{\partial l}{\partial \sigma}(\nu, \mu, \sigma) &= -2 N \nu \frac{1}{\sigma} + 2 \nu \sigma^{-3} \sum_{i=1}^N \left(x_i-\mu\right)^2 = 0 \text{,}\tag{6} \end{align}
wobei \(\psi^{(0)}\) die Polygammafunktion der Ordnung \(0\) ist; d. h. \(\psi^{(0)}(\nu) = \frac{d}{d\nu} \log \Gamma(\nu)\).
Der Träger der Verteilung sind jedoch die Werte von \(x\), für die \(\frac{x-\mu}{\sigma} \geq 0\) gilt, und dies führt zu einer zusätzlichen Bedingung, dass
\begin{equation} \mu \leq \min_i{x_i}.\tag{7} \end{equation}
Für \(\nu = \frac{1}{2}\) reduziert sich die partielle Ableitung der Log-Likelihood nach \(\mu\) auf
\begin{equation} \frac{\partial l}{\partial \mu}(\nu, \mu, \sigma) = {\sigma^2} \sum_{i=1}^N (x_i-\mu), \end{equation}
was positiv ist, wenn die Trägerbedingung erfüllt ist. Da die partielle Ableitung nach \(\mu\) positiv ist, erhöht die Erhöhung von \(\mu\) die Log-Likelihood, und daher ist die Bedingung beim Maximum-Likelihood-Schätzer für \(\mu\) aktiv
\begin{equation} \mu = \min_i{x_i}, \quad \nu = \frac{1}{2}. \tag{8} \end{equation}
Für \(\nu\), das ausreichend größer als \(\frac{1}{2}\) ist, hat die Likelihood-Gleichung \(\frac{\partial l}{\partial \mu}(\nu, \mu, \sigma)=0\) eine Lösung, und diese Lösung liefert den Maximum-Likelihood-Schätzer für \(\mu\). In beiden Fällen liefert die Bedingung \(\mu = \min_i{x_i}\) jedoch eine vernünftige Anfangsschätzung für die numerische Optimierung.
Darüber hinaus kann die Likelihood-Gleichung für \(\sigma\) explizit gelöst werden und liefert den Maximum-Likelihood-Schätzer
\begin{equation} \sigma = \sqrt{ \frac{\sum_{i=1}^N \left(x_i-\mu\right)^2}{N}}. \tag{9} \end{equation}
Daher verwendet die Methode _fitstart für nakagami
\begin{align} \mu_0 &= \min_i{x_i} \, \text{und} \\ \sigma_0 &= \sqrt{ \frac{\sum_{i=1}^N \left(x_i-\mu_0\right)^2}{N}} \end{align}
als Anfangsschätzungen für die numerische Optimierung entsprechend.