scipy.stats.johnsonsb#
- scipy.stats.johnsonsb = <scipy.stats._continuous_distns.johnsonsb_gen Objekt>[Quelle]#
Eine Johnson SB kontinuierliche Zufallsvariable.
Als Instanz der Klasse
rv_continuouserbt das Objektjohnsonsbvon dieser eine Sammlung generischer Methoden (siehe unten für die vollständige Liste) und vervollständigt sie mit Details, die spezifisch für diese spezielle Verteilung sind.Methoden
rvs(a, b, loc=0, scale=1, size=1, random_state=None)
Zufallsvariaten.
pdf(x, a, b, loc=0, scale=1)
Wahrscheinlichkeitsdichtefunktion.
logpdf(x, a, b, loc=0, scale=1)
Logarithmus der Wahrscheinlichkeitsdichtefunktion.
cdf(x, a, b, loc=0, scale=1)
Kumulative Verteilungsfunktion.
logcdf(x, a, b, loc=0, scale=1)
Logarithmus der kumulativen Verteilungsfunktion.
sf(x, a, b, loc=0, scale=1)
Überlebensfunktion (auch definiert als
1 - cdf, aber sf ist manchmal genauer).logsf(x, a, b, loc=0, scale=1)
Logarithmus der Überlebensfunktion.
ppf(q, a, b, loc=0, scale=1)
Perzentilpunktfunktion (Umkehrung von
cdf— Perzentile).isf(q, a, b, loc=0, scale=1)
Umgekehrte Überlebensfunktion (Umkehrung von
sf).moment(order, a, b, loc=0, scale=1)
Nichtzentrales Moment der angegebenen Ordnung.
stats(a, b, loc=0, scale=1, moments=’mv’)
Mittelwert(‚m‘), Varianz(‚v‘), Schiefe(‚s‘) und/oder Kurtosis(‚k‘).
entropy(a, b, loc=0, scale=1)
(Differential-)Entropie der RV.
fit(data)
Parameterschätzungen für generische Daten. Siehe scipy.stats.rv_continuous.fit für eine detaillierte Dokumentation der Schlüsselwortargumente.
expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Erwartungswert einer Funktion (einer Variablen) bezüglich der Verteilung.
median(a, b, loc=0, scale=1)
Median der Verteilung.
mean(a, b, loc=0, scale=1)
Mittelwert der Verteilung.
var(a, b, loc=0, scale=1)
Varianz der Verteilung.
std(a, b, loc=0, scale=1)
Standardabweichung der Verteilung.
interval(confidence, a, b, loc=0, scale=1)
Konfidenzintervall mit gleichen Flächen um den Median.
Siehe auch
Hinweise
Die Wahrscheinlichkeitsdichtefunktion für
johnsonsbist\[f(x, a, b) = \frac{b}{x(1-x)} \phi(a + b \log \frac{x}{1-x} )\]wobei \(x\), \(a\) und \(b\) reelle Skalare sind; \(b > 0\) und \(x \in [0,1]\). \(\phi\) ist die PDF der Normalverteilung.
johnsonsbnimmt \(a\) und \(b\) als Formparameter.Die oben angegebene Wahrscheinlichkeitsdichte ist in der „standardisierten“ Form definiert. Zum Verschieben und/oder Skalieren der Verteilung verwenden Sie die Parameter
locundscale. Genauer gesagt, istjohnsonsb.pdf(x, a, b, loc, scale)identisch äquivalent zujohnsonsb.pdf(y, a, b) / scalemity = (x - loc) / scale. Beachten Sie, dass das Verschieben des Ortes einer Verteilung diese nicht zu einer „nichtzentralen“ Verteilung macht; nichtzentrale Verallgemeinerungen einiger Verteilungen sind in separaten Klassen verfügbar.Beispiele
>>> import numpy as np >>> from scipy.stats import johnsonsb >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Ermitteln Sie den Träger (Support)
>>> a, b = 4.32, 3.18 >>> lb, ub = johnsonsb.support(a, b)
Berechnen Sie die ersten vier Momente
>>> mean, var, skew, kurt = johnsonsb.stats(a, b, moments='mvsk')
Zeigen Sie die Wahrscheinlichkeitsdichtefunktion (
pdf) an>>> x = np.linspace(johnsonsb.ppf(0.01, a, b), ... johnsonsb.ppf(0.99, a, b), 100) >>> ax.plot(x, johnsonsb.pdf(x, a, b), ... 'r-', lw=5, alpha=0.6, label='johnsonsb pdf')
Alternativ kann das Verteilungsobjekt (als Funktion) aufgerufen werden, um die Form-, Orts- und Skalierungsparameter festzulegen. Dies gibt ein „eingefrorenes“ RV-Objekt zurück, das die angegebenen Parameter beibehält.
Frieren Sie die Verteilung ein und zeigen Sie die eingefrorene
pdfan>>> rv = johnsonsb(a, b) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Überprüfen Sie die Genauigkeit von
cdfundppf>>> vals = johnsonsb.ppf([0.001, 0.5, 0.999], a, b) >>> np.allclose([0.001, 0.5, 0.999], johnsonsb.cdf(vals, a, b)) True
Generieren Sie Zufallszahlen
>>> r = johnsonsb.rvs(a, b, size=1000)
Und vergleichen Sie das Histogramm
>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2) >>> ax.set_xlim([x[0], x[-1]]) >>> ax.legend(loc='best', frameon=False) >>> plt.show()