Hypergeometrische Verteilung#

Die hypergeometrische Zufallsvariable mit den Parametern \(\left(M,n,N\right)\) zählt die Anzahl der „guten“ Objekte in einer Stichprobe der Größe \(N\), die ohne Zurücklegen aus einer Grundgesamtheit von \(M\) Objekten gezogen wird, wobei \(n\) die Anzahl der „guten“ Objekte in der Gesamtgrundgesamtheit ist.

\begin{eqnarray*} p\left(k;N,n,M\right) & = & \frac{\left(\begin{array}{c} n\\ k\end{array}\right)\left(\begin{array}{c} M-n\\ N-k\end{array}\right)}{\left(\begin{array}{c} M\\ N\end{array}\right)}\quad N-\left(M-n\right)\leq k\leq\min\left(n,N\right)\\ F\left(x;N,n,M\right) & = & \sum_{k=0}^{\left\lfloor x\right\rfloor }\frac{\left(\begin{array}{c} m\\ k\end{array}\right)\left(\begin{array}{c} N-m\\ n-k\end{array}\right)}{\left(\begin{array}{c} N\\ n\end{array}\right)},\\ \mu & = & \frac{nN}{M}\\ \mu_{2} & = & \frac{nN\left(M-n\right)\left(M-N\right)}{M^{2}\left(M-1\right)}\\ \gamma_{1} & = & \frac{\left(M-2n\right)\left(M-2N\right)}{M-2}\sqrt{\frac{M-1}{nN\left(M-m\right)\left(M-n\right)}}\\ \gamma_{2} & = & \frac{g\left(N,n,M\right)}{nN\left(M-n\right)\left(M-3\right)\left(M-2\right)\left(N-M\right)}\end{eqnarray*}

wobei (definieren \(m=M-n\) )

\begin{eqnarray*} g\left(N,n,M\right) & = & m^{3}-m^{5}+3m^{2}n-6m^{3}n+m^{4}n+3mn^{2}\\ & & -12m^{2}n^{2}+8m^{3}n^{2}+n^{3}-6mn^{3}+8m^{2}n^{3}\\ & & +mn^{4}-n^{5}-6m^{3}N+6m^{4}N+18m^{2}nN\\ & & -6m^{3}nN+18mn^{2}N-24m^{2}n^{2}N-6n^{3}N\\ & & -6mn^{3}N+6n^{4}N+6m^{2}N^{2}-6m^{3}N^{2}-24mnN^{2}\\ & & +12m^{2}nN^{2}+6n^{2}N^{2}+12mn^{2}N^{2}-6n^{3}N^{2}.\end{eqnarray*}

Implementierung: scipy.stats.hypergeom