Asymmetrische Laplace-Verteilung#

Diese Verteilung ist eine Verallgemeinerung der Laplace-Verteilung. Sie hat einen einzelnen Formparameter \(\kappa>0\), der die Asymmetrie der Verteilung spezifiziert. Der Spezialfall \(\kappa=1\) ergibt die Laplace-Verteilung.

Funktionen#

\begin{eqnarray*} F(x, \kappa) & = & 1-\frac{\kappa^{-1}}{\kappa+\kappa^{-1}}\exp(-x\kappa),\quad x\ge0; \\ & = & \frac{\kappa}{\kappa+\kappa^{-1}}\exp(x/\kappa),\quad x<0. \\ f(x, \kappa) & = & \frac{1}{\kappa+\kappa^{-1}}\exp(-x\kappa),\quad x\ge0; \\ & = & \frac{1}{\kappa+\kappa^{-1}}\exp(x/\kappa),\quad x<0. \end{eqnarray*}
\begin{eqnarray*} \mu & = & \kappa^{-1}-\kappa\\ \mu_2 & = & \kappa^{-2}+\kappa^2\\ \gamma_1 & = & \frac{2(1-\kappa^6)}{(1+\kappa^4)^{3/2}}\\ \gamma_2 & = & \frac{6(1+\kappa^8)}{(1+\kappa^4)^2} \end{eqnarray*}

Referenzen#

Implementierung: scipy.stats.laplace_asymmetric