Geometrische Verteilung#
Die geometrische Zufallsvariable mit dem Parameter \(p\in\left(0,1\right)\) kann als die Anzahl der Versuche definiert werden, die benötigt werden, um einen Erfolg zu erzielen, wobei die Erfolgswahrscheinlichkeit bei jedem Versuch \(p\) ist . Somit,
\begin{eqnarray*} p\left(k;p\right) & = & \left(1-p\right)^{k-1}p\quad k\geq1\\ F\left(x;p\right) & = & 1-\left(1-p\right)^{\left\lfloor x\right\rfloor }\quad x\geq1\\ G\left(q;p\right) & = & \left\lceil \frac{\log\left(1-q\right)}{\log\left(1-p\right)}\right\rceil \\ \mu & = & \frac{1}{p}\\ \mu_{2} & = & \frac{1-p}{p^{2}}\\ \gamma_{1} & = & \frac{2-p}{\sqrt{1-p}}\\ \gamma_{2} & = & \frac{p^{2}-6p+6}{1-p}.\end{eqnarray*}
\begin{eqnarray*} M\left(t\right) & = & \frac{p}{e^{-t}-\left(1-p\right)}\end{eqnarray*}
Implementierung: scipy.stats.geom