Gefaltete Normalverteilung#
Wenn \(Z\) normalverteilt ist mit dem Mittelwert \(L\) und \(\sigma=S\) , dann ist \(\left|Z\right|\) eine gefaltete Normalverteilung mit dem Formparameter \(c=\left|L\right|/S\) , dem Lageparameter \(0\) und dem Skalenparameter \(S\) . Dies ist ein Sonderfall der nicht-zentralen Chi-Verteilung mit einem Freiheitsgrad und dem Nichtzentralitätsparameter \(c^{2}.\) Beachten Sie, dass \(c\geq0\) . Die Standardform der gefalteten Normalverteilung ist
\begin{eqnarray*} f\left(x;c\right) & = & \sqrt{\frac{2}{\pi}}\cosh\left(cx\right)\exp\left(-\frac{x^{2}+c^{2}}{2}\right)\\ F\left(x;c\right) & = & \Phi\left(x-c\right)-\Phi\left(-x-c\right)=\Phi\left(x-c\right)+\Phi\left(x+c\right)-1\\ G\left(q;c\right) & = & F^{-1}\left(q;c\right)\\ M\left(t\right) & = & \exp\left(\frac{t}{2}\left(t-2c\right)\right) \left(1+e^{2ct}\right)\\ k & = & \mathrm{erf}\left(\frac{c}{\sqrt{2}}\right)\\ p & = & \exp\left(-\frac{c^{2}}{2}\right)\\ \mu & = & \sqrt{\frac{2}{\pi}}p+ck\\ \mu_{2} & = & c^{2}+1-\mu^{2}\\ \gamma_{1} & = & \frac{\sqrt{\frac{2}{\pi}}p^{3}\left(4-\frac{\pi}{p^{2}}\left(2c^{2}+1\right)\right)+2ck\left(6p^{2}+3cpk\sqrt{2\pi}+\pi c\left(k^{2}-1\right)\right)}{\pi\mu_{2}^{3/2}}\\ \gamma_{2} & = & \frac{c^{4}+6c^{2}+3+6\left(c^{2}+1\right)\mu^{2}-3\mu^{4}-4p\mu\left(\sqrt{\frac{2}{\pi}}\left(c^{2}+2\right)+\frac{ck}{p}\left(c^{2}+3\right)\right)}{\mu_{2}^{2}}\end{eqnarray*}
Implementierung: scipy.stats.foldnorm