Studentized Range Distribution#
Diese Verteilung hat zwei Formparameter, \(k>1\) und \(\nu>0\), und der Wertebereich ist \(x \geq 0\).
\begin{eqnarray*} f(x; k, \nu) = \frac{k(k-1)\nu^{\nu/2}}{\Gamma(\nu/2)2^{\nu/2-1}} \int_{0}^{\infty} \int_{-\infty}^{\infty} s^{\nu} e^{-\nu s^2/2} \phi(z) \phi(sx + z) [\Phi(sx + z) - \Phi(z)]^{k-2} \,dz \,ds \end{eqnarray*}
\begin{eqnarray*} F(q; k, \nu) = \frac{k\nu^{\nu/2}}{\Gamma(\nu/2)2^{\nu/2-1}} \int_{0}^{\infty} \int_{-\infty}^{\infty} s^{\nu-1} e^{-\nu s^2/2} \phi(z) [\Phi(sq + z) - \Phi(z)]^{k-1} \,dz \,ds \end{eqnarray*}
Hinweis: \(\phi(z)\) und \(\Phi(z)\) repräsentieren die normale PDF bzw. die normale CDF.
Wenn \(\nu\) 100.000 überschreitet, wird die asymptotische Approximation von \(F(x; k, \nu=\infty)\) oder \(f(x; k, \nu=\infty)\) verwendet.
\begin{eqnarray*} F(x; k, \nu=\infty) = k \int_{-\infty}^{\infty} \phi(z) [\Phi(x + z) - \Phi(z)]^{k-1} \,dz \end{eqnarray*}
\begin{eqnarray*} f(x; k, \nu=\infty) = k(k-1) \int_{-\infty}^{\infty} \phi(z)\phi(x + z) [\Phi(x + z) - \Phi(z)]^{k-2} \,dz \end{eqnarray*}
Implementierung: scipy.stats.studentized_range